A cation counterflux supports lysosomal acidification
نویسندگان
چکیده
The profound luminal acidification essential for the degradative function of lysosomes requires a counter-ion flux to dissipate an opposing voltage that would prohibit proton accumulation. It has generally been assumed that a parallel anion influx is the main or only counter-ion transport that enables acidification. Indeed, defective anion conductance has been suggested as the mechanism underlying attenuated lysosome acidification in cells deficient in CFTR or ClC-7. To assess the individual contribution of counter-ions to acidification, we devised means of reversibly and separately permeabilizing the plasma and lysosomal membranes to dialyze the cytosol and lysosome lumen in intact cells, while ratiometrically monitoring lysosomal pH. Replacement of cytosolic Cl(-) with impermeant anions did not significantly alter proton pumping, while the presence of permeant cations in the lysosomal lumen supported acidification. Accordingly, the lysosomes were found to acidify to the same pH in both CFTR- and ClC-7-deficient cells. We conclude that cations, in addition to chloride, can support lysosomal acidification and defects in lysosomal anion conductance cannot explain the impaired microbicidal capacity of CF phagocytes.
منابع مشابه
Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes.
Progranulin (PGRN) haploinsufficiency resulting from loss-of-function mutations in the PGRN gene causes frontotemporal lobar degeneration accompanied by TDP-43 accumulation, and patients with homozygous mutations in the PGRN gene present with neuronal ceroid lipofuscinosis. Although it remains unknown why PGRN deficiency causes neurodegenerative diseases, there is increasing evidence that PGRN ...
متن کاملStromal pH and Photosynthesis Are Affected by Electroneutral K and H Exchange through Chloroplast Envelope Ion Channels.
Potassium movement across the limiting membrane of the chloroplast inner envelope is known to be linked to counterex-change of protons. For this reason, K(+) efflux is known to facilitate stromal acidification and the resultant photosynthetic inhibition. However, the specific nature of the chloroplast envelope proteins that facilitate K(+) fluxes, and the biophysical mechanism which links these...
متن کاملCystine transport in purified rat liver lysosomes.
Amino acid efflux from highly purified rat liver lysosomes exposed to the methyl ester derivatives of leucine, methionine, tyrosine and cystine was examined. The lysosomal efflux of leucine, methionine and tyrosine was unaffected by the presence of MgATP, whereas cystine efflux was stimulated by MgATP. Exposure of lysosomes to 2 mM-MgATP resulted in lysosomal acidification and a 0.5 pH unit inc...
متن کاملAcidification of endocytic vesicles by an ATP-dependent proton pump
One of the early events in the pathway of receptor-mediated endocytosis is the acidification of the newly formed endocytic vesicle. To examine the mechanism of acidification, we used fluorescein-labeled alpha 2-macroglobulin (F-alpha 2M) as a probe for endocytic vesicle pH. Changes in pH were determined from the change in fluorescein fluorescence at 490-nm excitation as measured with a microsco...
متن کاملDecreased vacuolar acidification capacity in drug-resistant rat liver preneoplastic nodules.
Rat liver nodules produced by intermittent 2-acetylaminofluorene feeding exhibit alterations in cell surface receptors reminiscent of impairment of vacuolar acidification. In this report, vacuolar acidification activity, measured as the ATP-dependent quenching of acridine orange, was characterized in liver and nodular membrane fractions using various ion-transport inhibitors and with respect to...
متن کامل